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Seeing the Sun with “Invisible” Axions

Axions are hypothetical weakly interacting pseudoscalar bosons first proposed to explain the
strong CP problem in QCD [1]. In addition, axions are one of the top particle candidates for galactic
dark matter, provided the axion mass lies in the region 106 eV < m_< 103 eV [2]. If axions exist, they
would be copiously produced in the core of stars, making our Sun an ideal place to search for them.

The axion can couple to two photons via the Primakoff effect. This allows for the experimental
detection of the axion by setting up a conversion EM field to provide a virtual photon for this
interaction to take place (Fig. 1). In this scenario, the axion is converted in the magnet into a real and
detectable photon with the same energy as the incident axion. The probability of this coherent
conversion process , while small, goes as P~(B L)? where B is the intensity of the magnetic field and
L is the length of the magnet.

While many methods have been employed to search for axions [3], this experiment will search
primarily for solar axions using an axion helioscope (Fig. 2) which tracks the Sun at sunrise and
sunset. The CERN Axion Solar Telescope (CAST) usesa 10 m, 9.5 T LHC dipole magnet (Fig.3) [4]
with projected sensitivity two orders of magnitude more powerful than previous experiments,
allowing experimental limits to surpass astrophysical constraints for the first time (Fig. 4).

The energy spectrum of solar axions peaks ~4.4 keV and tapers off beyond 10 keV. For this
reason, the three detectors currently mounted on CAST are x-ray detectors, transparent to photon
energies greater than a few tens of keV. The Chicago detector is designed to be placed behind one of
the x-ray detectors to search for high energy axions. These higher energy axions may be produced, for
instance, in M1 nuclear transitions in the Sun (Fig. 5) or positron-electron annihilations with a
branching ratio to axions [5].
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a) Attainable 99.7% c.l. limits on the coupling strength of axions to two photons as
a function of axion rest mass in CAST (CERN Axion Solar Telescope).

b) Present experimental limits (Tokyo axion helioscope + SOLAX).

c) Astrophysical constraints (HB stars, thecretical).

Fig. 4 Expected axion limits attainable at CAST



eMotivation for high energy axion detector: If new boson couples to nucleons, it can substitute
for a y in plasma and nuclear processes. Solar luminosity via axion emission can be as high as few
% of total. Search with helioscope has not been performed before.
— Weak experimental limits already exist from observed solar y flux below 5.5 MeV
(a — yy following p +d — He + a).
— Other reactions of interest exist
(e.g9.,2.2MeV fromp+n—>d+a, 511 keV frome* +e —a+y, 477 keV from
'Bete—'Li"+v,, etc.)
— A generic search should not be limited to M1 transitions. Should surpass sensitivity
of searches for anomalous production of single y’s in accelerators. May surpass
sensitivity to small branching ratios (~<10-°-10-%) in laboratory searches. (calculation of
expected sensitivity in progress)
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Fig. 5 An excited nucleus

i . .. emits an axion in an M1
Fig. 1 Axion production in the Sun and transition

detection in the laboratory via the
Primakoff Effect.



Large low-background CWO inorganic crystal scintillator (0.6 kg)
200 keV threshold

200 MeV dynamic range (can increase this but efficiency becomes
very low)

12.8% resolution at 835 keV measured in CAST area

Muon veto efficiency > 97% (not yet optimized - 99.5% efficiency
was achieved previously in Chicago)

> 90% livetime (measured with LED pulser)

Background still not optimized (radon displacement and pulse shape
discrimination cuts not yet implemented).

~ 5 Hz raw counting rate measured in CAST experimental area in
February 2004
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Decisions, decisions:

Monte Carlo of inorganic crystal response
reduced best choices to BGO or CWO
(PWO has too low a light yield)

Choice of optimal crystal length and radius via
Monte Carlo of collimated signal and isotropic
backgrounds. Crystal must be well-aligned with
magnet bore (only slightly larger than it).

CWO crystal (I=7.5cm) in Pb shielding (R=4.75cm)
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The Calorimeter is INSTALLED
and OPERATIONAL.

These pictures show the
detector and the back end of the
decommissioned LHC magnet
immediately after installation

The detector sits behind the

MicroMegas detector and beside
the CCD telescope

+ thermal neutron absorber
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analysis program for pulse shape discrimination
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Conclusion:

The detector is installed at CERN and we are now waiting for the CAST
magnet to turn on to begin taking data.
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