

Axions and Us

An Overview of Dark Matter, Axion Physics and the CAST High Energy Axion Calorimeter

David Miller David Miller SPS Presentation SPS Presentation 19 April, 2004 19 April, 2004

The Plan of Action The Plan of Action

I.. Dark Matter

- • Why do we think there is stuff out there that we have never *really* seen or detected ?
- •What might constitute the dark matter ?
- II. Axions
	- •The theories and their predictions
	- •Is it a plausible candidate for the dark matter?
- III.**CAST High Energy Axion Calorimeter**
	- •Detector concept, design and construction
	- \bullet Data acquisition
	- •Data Analysis

I. Dark Matter I. Dark Matter

The Evidence he Evidence

- \bullet **Galaxy Clusters**
	- Motion of indiv. galaxies is anomalous (Zwicky ca. 1935)
	- Was difficult to measure at the time
- \bullet Hot gas clouds
	- Ellipsoidal shape implies underlying massive "halo"

(see *"More Evidence that DM rules the Universe"* Space.com: Oct. 23, 2002)

- •**• Rotation Curves**
	- Velocity profiles of stars in single galaxies remain "flat" to large radii, contrary to conventional Newtonian predictions
	- Can be measured for many galaxies

http://burro.astr.cwru.edu/JavaLab/RotcurveWeb/ **NGC 2403**

Fritz Zwicky: "Spherical Bastards"

Dark Matter Candidates

Conventional "Possibilities"

- \bullet Planets (they are "dark"
- White dwarfs, brown dwarfs, neutron stars
- •Black Holes (you might

Exotic Candidates

- WIMPs (Weakly Interacting Massive Particle s)
- Massive Neutrinos
- Modified Gravity
- **•Axions**

II. The AXION II. The AXION

- $\frac{1}{2}$ **QCD and axion physics: The Strong CP Problem**
	- \blacktriangleright **Reasons for thinking the** *Axion* **exists in the first place: first qualitatively then more rigorously**
- $\frac{1}{2}$ **Why it is a possible (good?) candidate for a dark matter particle**
- $\frac{1}{2}$ **Phenomenology and detection**

The Pool The Pool-Table Analogy to Axion Physics Table Analogy to Axion Physics

 \blacklozenge You observe that the pool-table you live on obeys a certain symmetry: namely, it's *FLAT to one part in 109* ¾ Pool table symmetry [≡] *F*

 \rightarrow Now imagine that one day you find that the floor on which the table sits is incredibly *non-Flat*: ¾*F* is violated everywhere *EXCEPT* on your pool-table! ¾The strong interactions (QCD) also obey a symmetry: *CP* • BUT: The Standard Model (as whole) does *NOT* obey CP!

Ø*Why is your pool-table fine-tuned to be so flat?!* ØThis is the pool-table analogy to the *Strong CP Problem Strong CP Problem* ◆Intelligent design? …*probably not* ◆Built-in mechanism in table? …*perhaps*…

(c.f. arXiv:hep-ph/9506229)

What's the deal here?! What's the deal here?!

❖ Pool-table top conserves *F***❖ But F is violated** in general! **PROBLEM! ❖ Strong sector** conserves *CP* **❖ But CP is** violated in SM generally! **Analogy**

Effects

 \rightarrow Table is forced horizontal

Sikivie, Physics Today 1996

Ø*This can be detected!! This can be detected!!*

The Strong CP Problem Revisited The Strong CP Problem Revisited

The QCD Lagrangian

$$
\mathcal{L}_{QCD} = -\frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} + \sum_{j=1}^n \left[\overline{q}_j \gamma^{\mu} i D_{\mu} q_j - (m_j q_{Lj}^+ q_{Rj} + \text{h.c.}) \right] + \frac{\theta g^2}{32\pi^2} G_{\mu\nu}^a \tilde{G}^{a\mu\nu}
$$
\n
$$
\rightarrow \text{One can show that: } \overline{\theta} = \theta - \text{arg Det}(M)
$$
\nInvestiating term

\nQuark mass matrix

\n
$$
\rightarrow \text{This implies an neutron electric dipole moment: } \frac{d_n}{m_n} \sim \frac{e}{m_n} \overline{\theta} \frac{m_u m_d}{m_u + m_d} \frac{1}{\Lambda_{QCD}}
$$

But experiment shows that: $\left|d_{_{n}} < 0.63 \cdot 10^{-23} \, e\cdot cm \Rightarrow \theta < 10^{-9} \, \right|$

• *Why is θ ~ arg Det (M) when θ originates in QCD and the originates in QCD and the quark mass matrix is set within electroweak physics?! quark mass matrix is set within electroweak physics?!* \rightarrow This is the STRONG CP PROBLEM !

The Peccei -Quinn Solution Solution

PQ Symmetry

 \bullet Introduce a symmetry that results in a term which dynamically minimizes*θ* !

Recall The Pool-Table

• We added a term that demanded conservationof *F* (i.e. that the table be *FLAT*) when the potential is minimized

• If we write the CP violating term:

$$
L_{\theta} = \theta_{\text{eff}} \frac{\alpha_s}{8\pi} F^{\mu\nu a} \widetilde{F}_{\mu\nu}^a
$$

• Then PQ Symmetry takes the form:

$$
L_{_{axion}}=\frac{1}{2}(\partial_{_{\mu}}a)^{^{2}}-\frac{\alpha_{_{s}}}{8\pi f_{_{a}}}aF_{^{_{\mu\nu}}}^{^{_{\mu\nu}}\widetilde{F}_{_{\mu\nu}}^{^{a}}
$$

- ¾Amounts to a massless, pseudoscalar axion field interacting with the gluon field
- ¾The *θ* has been "absorbed" into *a*
- \blacktriangleright Term $f_{\!\scriptscriptstyle a}$ is the Peccei-Quinn scale

Strong CP Problem Solved Strong CP Problem Solved

- \bullet At low energies (QCD scale) the properties of the axion field produce a potential that dynamically forces $\theta \to 0$
- • The same properties (an axion-gluon coupling term) also create a mass for the axion
- An axion-photon coupling term also appears

The Mass and Photon Coupling The Mass and Photon Coupling

of the Axion of the Axion

 $\boldsymbol{\dot{\cdot}}$ The axion mass is given by:

$$
m_{\scriptscriptstyle A} = \frac{\sqrt{Z}}{1+Z}\frac{m_{\scriptscriptstyle T}f_{\scriptscriptstyle T}}{f_{\scriptscriptstyle A}} = \frac{0.6 \times 10^7}{f_{\scriptscriptstyle A}(GeV)}eV
$$

❖ The axion-photon coupling constant is determined by:

$$
L_{_{A\gamma}}=g_{_{A\gamma}}(\vec{\mathrm{E}}\cdot\vec{\mathrm{B}})~a
$$

• Z = m _{*u*} m _{*d*} \rightarrow the ratio of up and down quark masses (~0.57)

- $m_{\overline{n}}$ = 135 MeV \rightarrow the pion mass
- $•$ f_{π} = 93 MeV → pion decay constant

❖ Axion mass range:

10-6 eV < m a < 10-2 eV

NOTE: It permits the conversion of an axion into a single <u>real photon</u> in the presence of an external **B-field**

 \triangleright The coupling constant is then:

$$
g_{A\gamma} = (\frac{\alpha}{2\pi f_A})(\frac{E}{N} - 1.92)
$$

Experimental Limits on the Axion Experimental Limits on the Axion

mass and mass and g aγγ

a) Attainable 99.7% c.l. limits on the coupling strength of axions to two photons as a function of axion rest mass in CAST (CERN Axion Solar Telescope).

b) Present experimental limits (Tokyo axion helioscope + SOLAX).

c) Astrophysical constraints (HB stars, theoretical).

Astrophysical Limits Astrophysical Limits

Exclusion Range Plausible Dark-Matter Range

Total Experimental & Total Experimental & Astrophysical Limits Astrophysical Limits

The Axion as Dark Matter The Axion as Dark Matter

- \bullet Allowed mass range: 10-6eV < *m a* < 10-2eV
- Axions are non-relativistic as soon as its mass is "turned on" (at $\Lambda_{\rm QCD}$ \equiv characteristic temp/energy) – Axions will thus be *cold dark matter*
- •Contribution to energy density given as:

$$
\Omega_{a} = \left(\frac{0.6 \ 10^{-5} \ \mathrm{eV}}{m_{a}} \right)^{\frac{7}{6}} \left(\frac{200 \ \mathrm{MeV}}{\Lambda_{QCD}} \right)^{\frac{3}{4}} \left(\frac{75 \ \mathrm{km/s \cdot Mpc}}{H_{0}} \right)^{2}
$$

Axion Phenomenology Axion Phenomenology

•The Primakoff Effect

 $\mathcal{L}_{\mathcal{A}}$ The coupling of an axion to two photons in an external B-field

•M1 Transitions

– The release of an axion during an M1 nuclear transition

Axion Detection: Axion Detection: Primakoff Primakoff Effect

•The Primakoff effect allows for axion-photon conversion inside a magnetic field

- • Probability (*P*) of conversion depends on the strength and length of the magnetic field
	- Want VERY long, VERY strong field!

 $P\varpropto \big(B\bullet L\big)^{\!2}$ *Conversion goes as square of B x L:*

The Cern Axion Solar Telescope elescope

The CAST Collaboration (sort of) The CAST Collaboration (sort of)

Detector Goals and Motivation Detector Goals and Motivation

• *Goals:*

- Extend sensitivity to axion-induced photons from tens of keV to 100 MeV
- Must maintain low background contamination yet remain compact and lightweight

• *Motivation: Motivation:*

- If axion couples to nucleons in M1 trans., can substitute for γ in nuclear processes
- Axion emission may be as much as few % of total solar luminosity

Detector Design: Calorimeter Detector Design: Calorimeter

MCNP calculated full-energy (peak) efficiency for collimated axion-induced gammas

Crystal Selection Crystal Selection

Monte Carlo of inorganic crystal response reduced best choices to BGO or CWO (PWO has too low a light yield)

Choice of optimal crystal length and radius via Monte Carlo of collimated signal and isotropic backgrounds. Crystal must be well-aligned with magnet bore (only slightly larger than it).

Detector Construction Detector Construction

Data Acquisition and Testing Data Acquisition and Testing

- \bullet DAQ is simple and compact
	- Digital Spectrometer with
	-
- \bullet Crystal has good energy resolution and low internal contamination

Data Analysis Data Analysis

- • Digital spectrometer with digital waveform capture allows for pulse-shape analysis
- Discrimination against environmental neutron radiation and internal alpha contamination
- \bullet Plastic scintillating muon veto allows for cosmic muon rejection

Energy (keV)

So what now? So what now?

- • Calorimeter is installed and operational
- Detector is idle until CAST comes online… hopefully soon!
- Expected run time: \sim 6 i months

We wait diligently for the Axions We wait diligently for the Axions

